
Flent: The FLExible Network Tester
Toke Høiland-Jørgensen

Karlstad University
toke.hoiland-jorgensen@kau.se

We present a tool designed to make experimental evaluations of networks more reliable and easier to
perform. This tool, called Flent, works by composing well-known benchmarking tools to, for example, run
tests consisting of several bulk data flows combined with simultaneous latency measurements. Tests are
specified in source code, and several common tests are included with the tool. In addition, Flent contains
features to automate test runs, and to interactively plot and explore data collected from experiments.

1 Introduction

There can be many difficulties in running properly man-
aged experimental evaluations of networks. Hence, often-
times new network technologies are primarily (or even
exclusively) evaluated by simulation. Using simulation can
make sense because many difficulties disappear when run-
ning the experiment is as easy as launching a computer
program. However, we wish to make the case that running
actual experiments on real-world hardware is an import-
ant element of network research. And we believe that ex-
perimental evaluation should not be shunned because of
the inherent difficulties in running the experiments; but
rather that it is important to work towards increasing reli-
ability and making it easier to run tests.

There are several reasons why it is valuable to run
experiments instead of simulations. The main reason is
also the most obvious: simulations are necessarily ideal-
ised, and may not be accurate. In particular, interactions
between networking hardware, drivers and the operating
system can give rise to effects that would otherwise be
missed. Whether it is hidden buffers in the networking
hardware, device drivers or the operating system network
stack; hardware offloads that amplify quantification ef-
fects by making packets appear bigger to the algorithms
deployed higher in the stack; or plain and simple bugs:
real-world systems simply behave differently than the sim-
ulation might indicate.

Another reason to prefer experiments on real systems
is the sheer pace of development of, especially, open source
operating systems. Linux in particular has seen sweeping
changes to its network stack over the last several years,
in many aspects completely changing its behaviour. Hav-
ing more scrutiny on this process by the academic com-
munity can be valuable in itself. But more importantly,
these changes mean that the assumptions underlying new
research needs to be checked against the actual systems
running the internet.

We present a tool designed to work towards the goal
of making testing more reliable and easier to carry out.
This tool, called Flent1, works by composing well-known

1Short for the FLExible Network Tester. Additionally, it is well known

benchmarking tools to (for example) run tests consisting
of several bulk data flows combined with simultaneous
latency measurements. Tests are specified in source code,
and several common tests are included with the tool. In
addition, Flent contains features to automate test runs,
and to interactively plot and explore data collected from
experiments.

The rest of this paper describes Flent in more detail.
Section 2 elaborates on the difficulties of running experi-
ments and Section 3 describes Flent and how it addresses
these difficulties. Section 4 gives some examples of the
kind of tests that can be run with the tool. Finally, Section
5 outlines some future development directions, Section 6
summarises related work and Section 7 concludes.

2 Difficulties when running experiments

This section outlines some key difficulties that we believe
are important to address for successful real-world experi-
mental work, and that we seek to solve in the Flent testing
tool.

2.1 Coordinating different test tools

Many network benchmarking tools are single-purpose, or
can only run one test at a time. Thus, many tests require
running several instances of the same tool in concert. Sim-
ilarly, running different tools at the same time can be
necessary when a test scenario requires testing (e.g.) dif-
ferent types of traffic that cannot all be generated by the
same tool.

Often, ad-hoc scripting is the tool of choice when com-
bining test tools, but that can be error-prone and tedious,
and usually results in duplication of effort between differ-
ent test scenarios and deployments.

2.2 Reproducing experiments

Reproducing experiments is important for verifiability,
both for the researcher herself, but also for independent

that ’flent’ is the sound a network makes when subjected to rigorous
testing that exposes the flaws (such as bufferbloat) preventing it from
performing adequately.



reproduction by others. The more ad-hoc the test config-
uration and setup is, the harder this is. A common format
to describe tests will significantly ease the process of shar-
ing, and allows others to provide feedback. This can also
facilitate the collaborative development of best practices
for how to test different phenomena.

2.3 Managing test-bed configuration

Experiments often involve test-beds comprising several
physical devices setup to emulate the desired network to-
pology and characteristics, and the configuration of these
devices must be managed. This includes correctly config-
uring network interfaces, applying the algorithm(s) under
test, etc. Additionally, the configuration must be verifiable
after the tests have run, so that it is possible to certify that
a data set corresponds to a particular configuration.

This process can be error-prone, especially as the num-
ber of configuration parameters that vary between test
runs increase. In addition, application of configuration can
fail, either from human error or from (unchecked) failures
in the application process, so automation is important in
both application and subsequent collection.

2.4 Storing and analysing measurement data

As the number of experiments grow, storing the measure-
ment data and relating it to the tested configurations be-
comes harder. This is exacerbated by the previous issue
of coordinating several benchmarking tools with possibly
different output formats. A standardised way is needed
to manage these different benchmark tool outputs, and
extracting the meaningful data points for further analysis.
This also ties into the previous point on configurationman-
agement, in that the configurationmust bematched to the
stored data; and preferably this configuration information
should not be lost as the data is further processed.

3 Running tests with Flent

Flent [2] is a testing tool developed specifically to address
the difficulties mentioned in the previous section, while
also being extensible to address other future use cases. It
is a Python wrapper2 around several other well-known
network benchmark tools, most notably Netperf [3]. This
section describes how Flent seeks to address each of the
difficulties presented in the previous section.

3.1 Coordinating different test tools

Flent works by running one or more tests, each defined
by a configuration file that specifies which benchmarking
tools to run. Several tools can be run simultaneously, or in
series, and dependencies can be specified between them
(e.g., run one tool once another has finished). This mode of
operation is inspired by the Unix philosophy of composing
separate tools that each does one thing well. Flent simply

2And indeed, Flent has until recently been named netperf-wrapper.

adds coordination, and thus is able to leverage the capabil-
ities of existing tools and achieve the samehigh confidence
in the benchmark results afforded to well-known tools
such as Netperf.

The output of each test tool is parsed, and the interest-
ing data is stored in a common JSON-based format. This
makes it easy to create composite tests comprising several
different tools, and afterwards directly compare the data
collected by the tools. A common example employed in
many of the tests included with Flent is running one or
more instances of Netperf to produce bulk flows, while sim-
ultaneously measuring the end-to-end latency by means
of the regular ping command.

3.2 Reproducing tests

Each test defined is Flent is named and has a separate
config file. This greatly aids reproducibility, as the named
tests are available along with the source code, and can
thus be referenced reliably. Additionally, this makes Flent
tests vary versatile, since more extensive test suites can
be composed of the available tests. This also allows Flent
to work well with other tools that manage test setups:
Anywhere there’s a Python environment, the required
underlying benchmarking tools and a network connection,
Flent can run.

Indeed, running tests under varying conditions is a
major goal of Flent. As such, care is taken to avoid external
dependencies where possible, and to support different
alternatives for test tools where appropriate. In particular,
it is an explicit design goal to be able to run a test from,
say, a regular laptop connected to a network that is not
necessarily under the control of the experimenter (the
”test my hotel wifi” scenario), as well as working in a fully
instrumented testbed environment.

3.3 Managing test-bed configuration

Flent has built-in batch run capabilities, making it possible
to specify a series of test runs to be run in sequence, while
supporting inheritance and recursive expansion of vari-
ables and config sections to facilitate configuration reuse.
By means of this facility, extensive test suites can be built
from the named tests.

Flent does not include functionality to directlymanage
node configuration in a testbed. This is a deliberate design
choice: we have found that in the small to medium-sized
testbed environments targeted by Flent, simple scripts are
the most flexible choice for configuring nodes. However,
these scripts must run reliably before each test invoca-
tion, and any failures be detected detected. To achieve
this, the batch feature simply provides a facility to run
arbitrary commands before and after each test, and (op-
tionally) abort the test if any of the commands fail. Com-
binedwith themetadata gathered by Flent at each test-run,
this comprises an effective configurationmanagement and
verification facility.



3.4 Storing and analysing measurement data

Flent automatically gathers metadata from the host run-
ning the test (and optionally from remote hosts via SSH),
and stores the metadata in the data file along with the
test data. This means that a single data file can capture a
complete test run and be easily distributed or moved for
further analysis.

Flent also contains an extensive analysis facility, which
reads already produced test files and produces plots of the
data. A GUI makes it easy to flip between plots of different
test runs. Tests can define detail plots (such as the raw
timeseries data of throughput during the test run), as well
as aggregate plot types (CDFs, box plots, etc), and it is
possible to show several test runs side by side, as well
as to combine them into aggregate plots. Together, the
interactive plotting features make for a powerful analysis
tool in the exploratory phases. Additionally, the tool can
also produce final high-quality graphs for publication: The
example plots in the next section are produced by the
built-in plotting facilities.

Many plot types are included, so data exploration can
be done directly from the data files. Should this not be
sufficient, it is also possible to export the data to other
formats: there’s a CSV export feature in Flent itself, and
the JSON data format is readily parsable by other tools.

4 Examples of effective tests enabled by Flent

This section describes two example tests that have been
developed in conjunction with the Flent test tool, and are
included in the source distribution of the tool. They are
the Real-Time Response Under Load (RRUL) test, and the
RTT fairness test.

4.1 The RRUL test

The RRUL test was developed by the bufferbloat com-
munity [6] specifically to stress-test networks and weed
out undesirable behaviour. It consists of running four con-
current TCP flows in each direction, while simultaneously
running UDP and ICMP flows to measure latency. The goal
is to saturate the connection fully, to better observe the
behaviour in this scenario. This is valuable for exposing
bufferbloat in particular, but also works well as a general
stress-test of queue management schemes.

An example of the results that can be obtained with
the RRUL test is shown in figure 1. This figure shows the
result of running the RRUL test over a bottleneck linkman-
aged by a series of different queue management schemes.
The plot shows the mean induced latency vs the mean
TCP goodput for each of the queue management schemes,
with the dots showing the median values and the ellipses
showing the variance. This gives an overview of several
test results, while other available plot types serve well in
the exploration phase, or when examining details of the
test performance.

01020304050607080
Mean induced latency (ms)

82

84

86

88

90

92

94

96

M
e
a
n

 T
C

P
 g

o
o
d

p
u

t 
(M

b
it

/s
)

pfifo_fast

ared

pie

codel

sfq

fq_nocodel

fq_codel

Figure 1: A bandwidth/delay plot of results of running the RRUL
test. The dots show the median values and the ellipses
the variance of the per-test-run mean goodput and
mean induced latency.

4.2 RTT fairness measurements

TheRTT-fairness test examines the RTT fairness properties
of TCP. It is well-known that the TCP goodput is affected
by the RTT [5], because the congestion control algorithm
reacts to feedback that is on an order of the RTT.

The purpose of the RTT-fairness test is to evaluate
whether the queue management schemes make this effect
worse, or whether they help alleviate it. The test consists
of running four concurrent TCP streams from the client
to four different servers. Flent includes several variants of
the RTT-fairness test that can be run against four arbitrary
hosts, making it easy to examine the behaviour in any
scenario where suitable test endpoints (with varying path
characteristics) are available.

Figure 2 shows an example of the results against the
same set of queue management schemes as the RRUL test
above, run against four endpoints with path RTTs of 10, 50,
200 and 500 ms, respectively. The figure shows the mean
goodput of each of the four TCP streams for each of the
queue management schemes.

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s

1
0

 m
s

5
0

 m
s

2
0

0
 m

s
5

0
0

 m
s0

1

2

3

4

5

6

M
e
a
n

 b
a
n

d
w

id
th

 (
M

b
it

s/
s)

pfifo_fast ared pie codel sfq fq_nocodel fq_codel

Figure 2: RTT fairness results. The graphs show the aggregate
mean goodput of each of the four TCP flows for each
queue management scheme.



5 Future planned development

Flent is developed as free software and used in the buf-
ferbloat community to diagnose bufferbloat and develop
and test solutions to it. An on-going effort is to make the
tool easier to use, especially on first use, and so make it
applicable for more people and in more situations. Addi-
tionally, expanding the scope of the tool both in terms of
the tests included and the analysis capabilities is planned.

5.1 Ease of use and wider applicability

Flent neatly packages many things that would otherwise
need to be donemanually, and so lower the bar for running
experiments significantly. However, the tool still needs to
be run from the command line, and it needs to have the
test name and target endpoints supplied.

A development goal is to make it easier to run tests
out of the box, and support a straight-forward ”download
and run” use case. For this, we plan to establish a publicly
available set of endpoint servers and add geo-based discov-
ery of the nearest available server to Flent. In addition, we
plan to develop a suite of common tests targeted at meas-
uring internet access link behaviour.

Longer term, running tests directly from the GUI will
make the tool accessible to users for whom using the com-
mand line is not an option.

5.2 Expanding test coverage and analysis capability

Developing test coverage as more interesting scenarios
are discovered is an ongoing effort. Collecting these and
distributing them as part of the Flent source code is an
important part of future development.

As more test data is accumulated, storage and indexing
can be a challenge. A future goal is to develop a solution for
storing and indexing data, to ease comparison over both
time and different test scenarios.

6 Related work

The difficulty of properly constructing and performing ex-
periments, and of reporting accurately on the results of
them is not limited to experiments conducted on real hard-
ware. For instance, Kurkowski et al [4] found that many
simulation studies in the MANET research community
suffered from a series of common errors, many of which
are related to those discussed here (e.g. lack of reprodu-
cibility and ambiguous initial configuration).

The TEACUP system [7] is a test automation framework
created specifically to test TCP implementations. It dif-
fers from Flent in that its focus is on managing an entire
testbed infrastructure, including managing rebooting of
machines and configuring the whole testbed. As such, it is
more full-featured in this respect, but also makes more as-
sumptions on topology and configuration of the machines
than Flent does, and has more dependencies. Additionally,
while TEACUP offers graphing and analysis of test results,

these are more limited, and there is no interactive GUI to
explore the data.

D-ITG [1] is a traffic generation and test platform with
an extensive list of supported traffic profiles. It is targeted
towards running in a managed testbed and emphasis is
put on remote management and having a separate control
network through which logging data can be transferred.
As such, unlike Flent, D-ITG does not include facilities to
interoperate with other tools, and does not offer integ-
rated analysis and plotting tools. Flent can use D-ITG as a
benchmarking tool in test definitions.

7 Conclusions

We have presented Flent, a tool to facilitate experimental
evaluations in networks, specifically designed to deal with
commonly encountered issues with running experiments.
These issues include coordinating different test tools, cre-
ating reproducible tests, managing test-bed configuration
and storing and analysingmeasurement data. Flent tackles
each of these issues, while seeking to be flexible andwidely
applicable. An explicit design goal is the ability to function
without an extensive management infrastructure, to e.g.
be runnable from a laptop over a network not under the
experimenter’s control.

We hope that Flent can be useful for others in the re-
search community, and will continue to develop it as free
software. Future development will have a special focus on
ease of use and wide applicability, and on expanding the
included suite of tests and the analytical capabilities of the
tool.

8 References

[1] Alessio Botta, Alberto Dainotti, and Antonio Pescapè.
‘A tool for the generation of realistic network work-
load for emerging networking scenarios’. In: Computer
Networks 56.15 (2012), pp. 3531–3547.

[2] Flent source code repository. URL: http://flent.org.

[3] Rick Jones. Netperf. Open source benchmarking soft-
ware. 2015. URL: http://www.netperf.org/.

[4] Stuart Kurkowski, Tracy Camp, and Michael Col-
agrosso. ‘MANET Simulation Studies: The Incredibles’.
In: SIGMOBILE Mob. Comput. Commun. Rev. 9.4 (Oct.
2005), pp. 50–61. ISSN: 1559-1662. DOI: 10.1145/1096166.
1096174.

[5] Jitendra Padhye et al. ‘Modeling TCP throughput: A
simple model and its empirical validation’. In: ACM
SIGCOMM Computer Communication Review. Vol. 28. 4.
ACM. 1998, pp. 303–314.

[6] Dave Taht. RFC: Realtime Response Under Load (rrul) test
specification. Nov. 2012. URL: https://github.com/dtaht/
deBloat/blob/master/spec/rrule.doc?raw=true.

[7] Sebastian Zander and Grenville Armitage. TEACUP
v0.8 – A System for Automated TCP Testbed Experiments.
Tech. rep. 150210A. Centre for Advanced Internet Ar-
chitectures, Feb. 2015.

http://flent.org
http://www.netperf.org/
http://dx.doi.org/10.1145/1096166.1096174
http://dx.doi.org/10.1145/1096166.1096174
https://github.com/dtaht/deBloat/blob/master/spec/rrule.doc?raw=true
https://github.com/dtaht/deBloat/blob/master/spec/rrule.doc?raw=true

	Introduction
	Difficulties when running experiments
	Coordinating different test tools
	Reproducing experiments
	Managing test-bed configuration
	Storing and analysing measurement data

	Running tests with Flent
	Coordinating different test tools
	Reproducing tests
	Managing test-bed configuration
	Storing and analysing measurement data

	Examples of effective tests enabled by Flent
	The RRUL test
	RTT fairness measurements

	Future planned development
	Ease of use and wider applicability
	Expanding test coverage and analysis capability

	Related work
	Conclusions
	References

